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The criterions of optimal stabilization of motion with respect to a part of the 
variables which are established here, modify the theorems of Krasovskii Cl 1 
and Rumiantsev [2,31. Application of these criteria to autonomous systems 

is studied and an example given, 

1, Let us consider a system of differential equations of perturbed motion of a con- 
trolled system 

x’ = X (6, x, u) (X (t, 0, 0) zz 0) Cl.11 

x = (YIt * * ‘I Ym- 21, . * *, zp), u = (%, . . -. ui-), 

m>O, p),O, n=m+p, r>O 

we choose a certain class K = {u (t, x)} of controls u (t, x) continuous in the region 

t>, 0, II Y II < B > 0, 0 < II 55 II < 00 (1.21 

and assume that for any u = u (t, x) e k’ 
a ) the right hand sides of tire system Il.1 > are continuous in the region (1.2 ) and 

satisfy the conditions of uniqueness of the solution: 
b) solutions of the system (1.1) are z -continuable, i.e. every solution x (1) 

is defined for all t > 0 for which I/ y (1) 11 < H. 
Weuse, as the control quality criterion, the condition of minimum of the integral C 11 

J = 5 o(t, x It], 11 [I 1) dt, 0 > 0 (1.3) 
ill 

for all u (t, x) E R. The problem of optimal y -stabi~zation C2,4 1 in class R 

consists of finding a function u = no (t, x) E K ensuring the asymptotic y -stabi- 
lity of the motion x = 0, and thefollo~ng~e~ali~must hold for any fttt~cti~ tt = 

U* (t, x) E K sa>sfying this condition: 

1’ w (t, x0 ItJ, tt” [tJ) c!C \<J 0 (t , s* [t], tt* [l]) dt 
lo to 

for to > 0, x* I.&J = x* It,1 = x0, I] x0 11 < h = const. 

2, ~ollow~g 0 3 we adopt the notation 

Theorem 1, Assume that the functions II = u” (t, x) E K and a function 
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V (2, x) exist and satisfy the following conditions: 
1) when u = u0 (d, x) , the motion x = 0 is asymptotica~y Y -stable ; 

2) z3 IV, t, x, u* (1, x I = 0; 
3) B[VJ,x,u(t,x) 1 >o for any u (t, x) E K; 

4) the following inequality holds for every control u* (t, z) E K ensuring the 

asymptotic y -stability of the motion x= 0 : 

fi? V (t, x0 [tJ) > fi: V (t, x* [tj) C2.2) 

(where we assume that the limits appearing in (2.2 > exist). 
Then the function u = u0 (1, x) solves the problem of optimal 

class K. 

y -stabilization in 

P t o of l By virtue of condition 2 1 of the theorem the relation dV (t, x0 bl) f 

& = -_w (I, x0 (.$I, u” [tf) holds. Integrating this relation we obtain 

x0 It], u” [t]) dt + !i; V (t, x0 [t]) 
(2.3) 

By virtue of condition 3 ) of the theorem the inequality dV (t, x* ftl) / dt > 
--w (1, x* It]) hol~for~e~nction u* (2, x) E K satisfying the condition 4 1. 

TrItegrating this inequality we obtain 

v (to, XO) < 5 o (t, x* It], u* [t]) dt +,‘if V (t, x* [t]) (2.4) 

lo 

From (2.3 1 and (‘2.4) we have, by virtue of (2.2 1, 

Q) 

~ojt,x”lt],~~[t])dt~~o(t,x*[t],u*[t])dt+ 
to to 

itt V (t, x* ftj) - fit V (t, x0 [t]) < 10 (t, x* [tf, U* [tl) dt 
to 

Q. E.D. 

From the practical point of view the most interesting case is that, in which the li- 
mits appearing in (2.2 1 are equal to zero. Namely, from Theorem 1 follows 

Corollary. Assume that the functions II* (t, x) E K and V (t, xl satisfying 

the condition 1) - 3 1 of Theorem 1 exist and the following relation holds for any control 
u* (t, x) E K satisfying the asymptotic Y -stability of the motion x = 0 : 

lim V (t, x0 [t]) = lim V (t, x’* [t]) = 0 (2.5) 
t-+lx t-+02 

Then the function u” (t, x) solves the problem of optimal y-stabilization in class R. 

N o t e 8. 1). Theorem 1 modifies the results of 11 - 3 1 in two aspects. Firstly the 
relation (2.2) is more general than the equality (2.5) the validity of which was guar- 
anteed by the theorems of Cl - 3 I. Secondly, in the theorems of [l - 3 1 the asymp - 
totic stability (with repsect to all or some of the variables) of the motion x = 0 was 
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established for u = u” (t, x) with help of the same function lJ which was used to 

establish the conditions 2 1 and 3 1 of Theorem 1 and the relation (2.5) t although con- 

dition 1) of Theorem 1 can be verified using another Ltapunov function (which may be 
a vector function 1 satisfying the conditions of any theorem of asymptotic y-stability C4 I. 

2). If lim V (t, x0 [t]) = 0 as t -* 00) then by virtue of (2.2) Theorem 1 
can be used only if the condition that lim V (t, x* [tl) < 0 as f - 00, holds. When the 

function V is no~egative, the latter inequality becomes an exact equality (see (2.5 ) 1. 

3. Let us assume that the system (1. 1) and the control quality criterion (1.3 > are 
time independent and have respectively the following form: 

x’ = X(x, u) (3.1) 

J = jm(x[tJ, uttl)dt (3.2) 

and continuous functions independznt of t appear in the class K = {u (x)} . 

T he ore m 2. Assume that for any u (x) E K every solution of the system 
(3.1) originating in some neighborhood of the point x = 0 is bounded, and let the 

functions u” (x) E R and i/ (x) be such that 

1) JJ (x) > a (fl Y 11) w ere h o (r) is a continuous function monotonously in- 
creasing on lo, Hi and z (0) = 0; 

21 B [V, x, u“ (x)1 = 0 and 

V” lu=wx) = - ” (x, u”(x)) 
=o when X~M 
< o when x EM 

3) Bft/‘,x,u(x)f>O for any u (x) E R; 
4IthesetC51 Ma =M n k?~ does not contain any whole semi-trajectories 

(1 E [0, oo)) of the system(3.1) when u = u” (x) whereM,= {x: V (x) > 0); 
5 > the relation lim V (x* [t]) = 0 as t + 00 holds for any control u* 

(x) E K ensuring the asymptotic p -stability of the motion x= 0. 
Then~e~nc~on u = u0 (x) solves the problem of optimal y -s~bi~zation in 

class R. 

Proof . By virtue of the conditions 1) ,2 ) and 4 ) and Theorem 4 of C5 I, the mo- 
tion x = 0 ofthesystem (3.1) with u = u” (x) isasymptotically y- stable ( and 

uniformly stable over {to, x0}), and lim V (x” [I]) = 0 as t + 00. Subse- 
quent application of the corollary of Theorem 1 completes the proof. 

Example. Let us consider a mechanical holonomic system with generaltzed 
coordinates (11, . . . , qn and time-independent constraints acted upon by the potential 
gyroscopic and certain other forces C3 1 

Qi = i mii (q) uj (q. q’) 
j=l 

Uj =Owhenq, = . . . = qm = qr’ = ..I = qn’ = 0 (m < n) 

so that the equations of motion have the form 

(3.3) 

d aT aT -~--_=--- 
dt aqi aqi ~~+~g,i’i.+~mijUi (i=k...,n;gij=--gji) (3.4) 

j=1 j==l 
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Using the total energy H = T + U of the system as the Liapunov function, we obtain C3 1 

H’ = i$l Qiqi' = 5 $j mijuiqi’ 
i=l j=l 

(3.5) 

Letusassumethat[5--71 
1) when u = 0 , the system (3.4) admits a particular solution q=q’=o 

(position of equilibrium ) ; 
2) the potential energy U = U (ql, . . . , qn) is positive-definite with respect to 

qll . . . , qm (m < 4; 

3 ) any mechanical considerations will show that the coordinates Qm+lr.~. . . , qn 
are bounded in every perturbed motion (e. g. the coordinates may be angular (mod 2~) [7’] ; 

4)when u=O , the set U (q) > 0 does not contain any positions of equilibrium 

of the system (3.4 1. 

Following C3 I, we shall pose the problem of determining the controls “j = ujO 

ensuring the asymptotic stability of the position of equilibrium q = q’ = 0 with respect 
to 419 - . . 9 qmr Ql‘, . . , qn’ and minimizing the functional 

(3.6) 

in which F (q, 9’) is a nonnegative function to be determined, and the quadratic form 
is a positive-definite function of the controls. 

In [3 1 the conditions B .[a, q, q’, II’] = 0 and B [H, q, q’, u] > 0 were used 
to show that the optimal controls Uj” and the function F have the form 

kc1 i-l 

F (q, q’) = i; QL;u~” 
i, j=l 

(3.7) 

(3.3) 

Let us assume that the quadratic form (3.8 ) is positive-definite with respect to ql’, . 
* - I qn ‘. Taking into account the fact that [3 ] EI’ = - 2F when ui = $ we can 

conclude ,using C5,6 I, that the position of equilibrium q = q’ = 0 with ui = uj” is 
asymptotically stable with respect to qrf - . - 7 Qmv Q1.9 - - .Y Qn’ (and uniformly in 

(lo9 90, Qo’h and lim H (q” It], q” [t]) = 0 as t - 00. 

Let now uj* denote any control ensuring the asymptotic stability of the equilibrium 

9 = q’ = 0 with respect to ql, . . . , qm, ql’, . . . , qn’ . Theset r+ of the w-limit 
points of any perturbed motion {q * [tl, q’* [t]) is nonempty by virtue of condition 3 ), in- 
variant C8 1 and consists therefore of the positions of equilibrium. Consequently, by virtue 
of 2) and 4) U = 0 ontheset I’+ andthisimpliesthat lim H (q * [tl, q’* [iI) = o 

as t + cm. 

Using Theorem 2, we arrive at the following conclusion : the controls (3.7 ) solve 
the problem of optimal (41, . . . , qm, ql’, . . . , ha) -stabilization cd Ike position of 
equilibrium q = q’ = 0 under the control quality criterion (3.61, (3.3 ) . 

4. When condition (2.2 ) ceases to hold, Theorem 1 becomes invalid and this can be 
confirmed in the following example. Let us consider a second order autonomous system 
(4.1) with the quality criterion (4.2 ). 
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We consider the positive-definite quadratic form V = l/s (ys + ~2) as the opti - 
ma1 Liapunov function* Its derivative with respect to time is, by virtue of the system 
(4.1) * V’ = - y* - z%~, therefore we have 

B [V, g, 2, ul = 0 (4.3) 

Thus every control u satisfies the conditions 1) - 3 ) of Theorem 1, It follows 
therefore that the integral (4. ‘2) must have the same value at all u. This is not 
however the case, When & = ,(I) s 8 e the solutions of (4.1) have the form 

y(l) ft] = y,ef 2 z(i) [ $1 =zOexp [-/~*fFdr] 

from which on the basis of (4.3 1 we obtain 
m 

J lu,(l) = s 
~s{t+z2)~~=V(~~, z~)-~~~V(~~l}[~J, ~‘~‘[tf)= (4.4) 

0 

- CXP (--- ?!ow 

When n = .(a) s 0 , solutions of the system (4.1) have the form y(s) [tl = yoeqf, 
z(z) [t] = zot and from this we have, by virtue of (4.3 1, 

m 

J lu,u(2) = 5 yzdt = V(y,, ~~)---~i~V(y(~) [tf, z(‘)[tl) = $ Y$ (4.5) 
-+ 

0 

Combining (4.4 ) and (4.5 ) we arrive at the inequalil_y 

J I_J~~ > J l,,,f2) when YO # 0, 20 # 0 Q. E. D, 
We take this oppor~ni~ to note that e. g, under the conditions of the Marachkov 

theorem f9 1 the function V need not tend to zero along the solutions. This can be 
illustrated by means of the following example. For the scalar equation 5.z -_5 
the positive-definite function V (t, 5) = “1~ (1 i- exp (2 t)) 9 which does not admit 
an infinitely small upper bound, has a negative-definite derivative y’ z - 3%. 

Then along the solutions we have 

liar Y (t, f (t)) = lim [l/s (1 + e2’) zo2e-“‘1 = l/a z$ # 0 when 
t-m t+= 

z,, + 0 

Q. E.D. 
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